Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kai-Long Zhong and Wen-Jie Lu*

Department of Chemical and Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province, People's Republic of China

Correspondence e-mail: wjlu@wyu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.046$
$w R$ factor $=0.111$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[copper(I)-di- μ-trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene- $\kappa^{2} N^{2}: N^{4} ; \kappa^{2} N^{4}: N^{2}$] tetrafluoroborate]

In the title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{BF}_{4}\right\}_{n}$, each copper(I) centre is tetrahedrally coordinated by N atoms from four bridging trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (TPPE) ligands. The ligands bridge adjacent copper(I) centres to form one-dimensional folded chains. Adjacent uniform chains are further interlinked into a three-dimensional framework through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions.

Comment

Metal-organic coordination polymers have recently attracted great interest, due to their interesting structural topologies and potential application as functional materials (Batten \& Robson, 1998; Eddaoudi et al., 2001). In particular, the 'node and spacer' methodology has proved to be remarkably successful in the rational design of metal-organic architectures. In this context, by far the most commonly utilized linear spacer ligand for linking metal centres is $4,4^{\prime}$-bipyridine. More recently, bifunctional analogues with an extended backbone, such as 1,2-bis(4-pyridyl)ethane (Hong \& Do, 1998), trans-1,2-bis(4-pyridyl)ethylene (Jung et al., 1998), bis(4-pyridyl)disulfide (Tabellion et al., 2001), trans-1-(2-pyridyl)-4-(4-pyridyl)ethylene (Raring \& Zubieta, 2001) and 2,5-bis-(4-pyridyl)-1,3,4-oxadiazole (Du et al., 2005), have been employed as nucleophilic linkers in self-assembly reactions with various labile metal complexes. Recently, we have utilized polydentate ligands for designing coordination networks (Lu et al., 2002). Here, we report the preparation and crystal structure of the title new one-dimensional coordination polymer, $\left[\mathrm{Cu}(\mathrm{TPPE})_{2}\left(\mathrm{BF}_{4}\right)\right]_{n}$, (I).

(I)

The asymmetric unit of (I) contains two TPPE ligands and copper(I) tetrafluoroborate (Fig. 1). Each Cu^{I} centre is tetrahedrally coordinated by four neighbouring TPPE ligands, which are in turn bound to two other Cu^{I} centres (Fig. 2 and Table 1). The $\mathrm{Cu}-\mathrm{N}(2$-pyridyl) distances $[\mathrm{Cu} 1-\mathrm{N} 1=$ 2.072 (3) \AA and $\mathrm{Cu} 1-\mathrm{N} 3=2.133$ (3) $\AA]$ are slightly longer than the $\mathrm{Cu}-\mathrm{N}(4$-pyridyl) distances $[\mathrm{Cu} 1-\mathrm{N} 2=2.052$ (3) \AA and $\mathrm{Cu} 1-\mathrm{N} 4=2.054(3) \AA$], which are comparable with the

Received 13 June 2005
Accepted 21 June 2005
Online 30 June 2005

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are plotted at the 30% probability level. The dashed line represents a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interaction.
$\mathrm{Cu}-\mathrm{N}$ bond lengths in bis\{[trans-1,2-bis(4-pyridyl)ethylene]copper(I)\} tetrafluoroborate [2.003 (5)-2.084 (6) A; Blake et al., 1997]. The two pyridyl rings of the same ligand are not coplanar and subtend dihedral angles of 50.5 (2) and 56.4 (2) ${ }^{\circ}$ in the two bipyridyl ligands, respectively.

The Cu^{I} centres are bridged by TPPE ligands to form onedimensional corrugated chains extending along the b axis (Fig. 2). Adjacent uniform chains are further interlinked through the BF_{4}^{-}bridges into a three-dimensional network (Fig. 3). There are $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen-bonding interactions between adjacent $\mathrm{BF}_{4}{ }^{-}$ions and pyridyl groups within each layer (Table 2).

Experimental

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{BF}_{4}(0.5 \mathrm{mmol})$ and TPPE $(1.0 \mathrm{mmol})$ were placed in a thick Pyrex tube with a Rotaflo stopper, and the tube was frozen using liquid nitrogen. After addition of dimethylformamide (1.0 ml) and $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{ml})$, the tube was evacuated, sealed with a stopper and heated at 383 K for 2 d to give dark-red block-like crystals of (I) in 60% yield, based on $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{BF}_{4}$. Analysis, found: C 55.63 , H 3.87, N 10.73%; calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{CuBF}_{4}$: C 55.99, H 3.89, N 10.89%. FT-IR data ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3054 (w), $1600(s), 1560(w)$, $1493(w), 1469(m), 1429(m), 1083(s), 1030(s), 970(w), 814(m), 768$ (w), 543.5 (m).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{BF}_{4}$
$M_{r}=514.79$
Monoclinic, $P 2_{1} / n$
$a=9.9969$ (6) \AA
$b=16.5736$ (10) \AA
$c=14.6322$ (9) \AA
$\beta=109.2480(10)^{\circ}$
$V=2288.8(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD 1 K areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.696, T_{\text {max }}=0.869$
12314 measured reflections

$$
\begin{aligned}
& D_{x}=1.494 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 10795 \\
& \quad \text { reflections } \\
& \theta=3-23^{\circ} \\
& \mu=1.01 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, dark red } \\
& 0.39 \times 0.25 \times 0.14 \mathrm{~mm} \\
& \\
& \\
& 4045 \text { independent reflections } \\
& 2273 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.047 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-17 \rightarrow 19 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Figure 2
Diagram showing the one-dimensional zigzag polymeric chain running parallel to the b axis. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, 1+y$, z; (iii) $1-x,-y, 1-z$.] H atoms have been omitted.

Figure 3
Diagram showing the neighbouring zigzag polymeric chains interlinked by tetrafluoroborate anions via very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions, shown as dashed lines.

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0457 P)^{2}\right]$
$w R\left(F^{2}\right)=0.111$
$S=1.00$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
4045 reflections
307 parameters
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.38 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$			
$\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{ii}}$	$2.052(3)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.332(4)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.072(3)$	$\mathrm{N} 2-\mathrm{Cu} 1^{\mathrm{i}}$	$2.052(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$\mathrm{~N} 3-\mathrm{C} 13$	$1.335(5)$	
$\mathrm{N} 1-\mathrm{C} 1$	$1.343(3)$	$\mathrm{N} 3-\mathrm{C} 17$	$1.347(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$\mathrm{~N} 4-\mathrm{C} 23$	$1.334(4)$	
$\mathrm{N} 2-\mathrm{C} 10$	$1.360(4)$	$\mathrm{N} 4-\mathrm{C} 22$	$1.337(5)$
	$1.323(4)$	$\mathrm{N} 4-\mathrm{Cu} 1^{\mathrm{ii}}$	$2.054(3)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{ii}}$			
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$102.70(12)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Cu} 1^{\mathrm{i}}$	$121.3(3)$
$\mathrm{N} 4^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1$	$120.96(11)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.8(3)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 3$	$109.40(12)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 17$	$117.9(4)$
$\mathrm{N} 4^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 3$	$105.74(12)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{Cu} 1$	$115.5(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$120.31(11)$	$\mathrm{C} 17-\mathrm{N} 3-\mathrm{Cu} 1$	$123.5(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$98.91(11)$	$\mathrm{C} 23-\mathrm{N} 4-\mathrm{C} 22$	$116.5(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	$116.6(3)$	$\mathrm{C} 23-\mathrm{N} 4-\mathrm{Cu} 1^{\mathrm{ii}}$	$119.7(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cu} 1$	$114.2(2)$	$\mathrm{C} 22-\mathrm{N} 4-\mathrm{Cu} 1^{\mathrm{ii}}$	$123.6(3)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11$	$128.0(2)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 14$	$123.5(4)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Cu} 1^{\mathrm{i}}$	$116.1(3)$	$\mathrm{N} 3-\mathrm{C} 17-\mathrm{C} 16$	$121.3(4)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$.

metal-organic papers

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12A $\cdots \mathrm{F} 1$	0.93	2.48	3.409 (5)	173
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{~F}^{\text {iii }}$	0.93	2.54	3.195 (5)	128
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~F} 3^{\text {iv }}$	0.93	2.43	3.192 (4)	139
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~F}^{\text {v }}$	0.93	2.47	3.174 (5)	133

The H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The X-ray data were collected at the Chinese University of Hong Kong.

References

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Blake, A. J., Champness, N. R., Chung, S. S. M., Li, W. S. \& Schroder, M. (1997). J. Chem. Soc. Chem. Commun. pp. 1005-1006.

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, M., Zhao, X.-J. \& Guo, J. H. (2005). Inorg. Chem. Commun. 8, 1-5.
Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Hong, C. S. \& Do, Y. (1998). Inorg. Chem. 37, 4470-4472.
Jung, O. S., Park, S. H., Kim, K. M. \& Jang, H. G. (1998). Inorg. Chem. 37, 5781-5785.
Lu,W. J., Zhang, L. P., Song, H. B., Wang, Q. M. \& Mak, T. C. W. (2002). New J. Chem. 26, 775-781.
Raring, R. S. \& Zubieta, J. (2001). Inorg. Chim. Acta, 319, 235-239.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tabellion, F. M., Seidel, S. R., Arif, A. M. \& Stang, P. J. (2001). J. Am. Chem. Soc. 123, 7740-7741.

